廃棄貝殻を利用したイセエビの増殖施設の開発 DEVELOPMENT OF NURSERY HOME FOR SPINY LOBSTERS MADE USE OF WASTE SHELL 藤澤真也¹・片山貴之¹・片山真基¹・清田健²・藤井淳夫²・伊藤靖³ Shinya FUJISAWA, Takayuki KATAYAMA, Masaki KATAYAMA Takeshi KIYOTA, Atsuo FUJII and Yasushi ITO ¹海洋建設株式会社(〒711-0921 岡山県倉敷市児島駅前1丁目75番地) ²株式会社エコニクス(〒004-0015 札幌市厚別区下野幌テクノパーク1-2-14) ³財団法人漁港漁場漁村技術研究所(〒101-0047 東京都千代田区内神田1-14-10) Since 1980s, various artificial reefs for Japanese spiny lobster *Panulirus japonicus* resource have been deployed in the coastal waters at Pacific and East China Sea. However, their structural feature was to provide only nest rooms but prey items, considered as another important factor to attract the lobsters. We have developed the new concept reef with waste shell, which cultivate prey organisms efficiently. In this study, we will show the following results of the five-year monitoring after this reef installation. (1) The prey animals increased to 45.0 kg m⁻³ in total weight on the reefs. (2) Adult lobsters were recorded for the first time in 21st month, and reached to 12.3 indv. m⁻³ in 57th month. (3) Egg-brooding adults, Puerulus larvae and juvenile were found in the reef. In conclusion, we are convinced the reef with shells is well suited to the all-stages lobsters for dwelling, feeding and reproducing place. And (4) other valuable species such as top shell, abalone and rockfish were found in the reef. Therefore, it is expected this technique to apply habitats for diverse species is also very effective in creation of the eco-friendly harbor area. Key Words: artificial reef, Japanese spiny lobster, Panulirus japonicus, Puerulus, waste shell ## 1.はじめに イセエビの資源増大を目的とした人工構造物は,1980年頃から太平洋や東シナ海にコンクリートや自然石が設置されている.イセエビの棲息に重要なことは,個体の安全の維持と,餌の確保であり,そのような環境条件の創出が必要であると考えているが,これまでの増殖施設では巣穴の提供に主眼がおかれており,餌料供給を考慮に入れたものはなかった.また,プエルルス幼生(ガラスエビ)や稚エビは藻着生活を行うことから海藻類の繁茂も重要な条件であると考えている. 貝類養殖などで発生した廃棄貝殻をメッシュパイプに充填した透水性構造の餌料培養基質(図-1,写真-1)は貝殻の重ね合わせによって形成される小型の複雑な空間により,エビ類,カ二類,多毛類などをはじめとする多くの付着動物を効率的に増殖することがこれまでの調査,研究^{1),2)}で分かっている. そこで本研究は,餌料培養基質を付加した増殖施設(以下、貝殻増殖施設)を開発し,イセエビの蝟集効果や餌料培養基質による付着動物の増殖効果,海藻類の着生効果などを明らかにし,イセエビの増殖施設としての効果を検討することが目的である. 図-1 餌料培養基質の構造 写真-1 餌料培養基質 # 2.調査内容,および方法 # (1) 調査海域,および調査対象 調査対象とした貝殻増殖施設(図-2)は礁高 1.2m,幅 3.5m×3.5m,空容積 8.6 空 m³の大きさで,2001年10月に長崎市野母町(図-3)の水深8mの海底に約 1mの間隔で東西方向に2基が沈設された. 本施設の構造は,餌料培養基質 20~22 本で構成した貝殻パネル3枚を基盤のコンクリート上に配置しており,上段を除く2枚の貝殻パネルを斜めにすることで上下にくさび形の空間(上段,中段,下段)が形成されていることが特徴である(図-4).また,それぞれの貝殻パネルの餌料培養基質間には数cmの間隔が設けられており,施設内部の明るさは上段の隙間>中段の隙間>下段の隙間の順に明るく,底板コンクリート下はこれらよりもさらに暗くなる. 図-2 貝殼増殖施設(8.6空m³) 図-3 調査海域 図-4 貝殻増殖施設の構造 #### (2) 調査方法 調査は,海藻類着生状況調査,付着動物調査,イセエビを中心とした魚介類蝟集状況調査を,2002年3月から2006年8月までの間に主にスキューバ潜水を使用して10回にわたって実施した. 海藻類着生状況調査は,貝殻増殖施設に着生した 大型海藻類であるホンダワラ類やコンブ類について 藻長や着生状況などの記録を行った. 付着動物の調査は,直径15cm,長さ30cmのメッシュパイプに貝殻を充填したもので餌料培養基質と 同じ構造の貝殻テストピース(以下,貝殻テストピース,写真-2)を増殖施設上面に取り付け,それを定期的に水中で木綿袋に収容して回収し,着生した動物を全て剥ぎ取って,種別に生物量を測定した.また,対照として直径15cm,長さ30cmの円柱形のコンクリート製の平面形状テストピース(以下,平面形状テストピース)を用い,同様の方法で調査を実施した. 魚介類蝟集状況調査は,主にイセエビを中心とした魚介類について目視観察を実施し,大きさ,個体数などを記録した.イセエビについては,貝殻パネルによって形成された施設内部の空間を上段,中段,下段の3カ所と底板コンクリートと海底の間の空間1カ所に分けて,蝟集した個体の計数を実施した. また,2006年8月には施設引き揚げ調査として, 貝殻増殖施設を水中でイセエビが逸脱しないように, この貝殻増殖施設全体をネットで包んだ後にクレー ンで台船上に引き揚げて,施設内部に潜入した個体 の計数や大きさの測定を行った. 本施設のイセエビの蝟集効果を検討するため,同海域の水深40mに沈設された人工構造物(対照区)について同様の方法で潜水による目視観察を実施したほか,静岡県下田市地先の水深20mに沈設された人工構造物(対照区)の調査結果を参照し,貝殻試験施設と比較した.両海域の人工構造物の概要を表-1に示す. 写真-2 貝殻テストピース(左)と平面形状テスト ピース(右) 表-1 長崎市野母町地先と静岡県下田市地先の 人工構造物の概要 | 海域 | | 長崎市野母町
(対照区) | 静岡県下田市
(対照区) | | | |---------------|---------------------|----------------------|---|--|--| | 施設の大きさ
(m) | | 礁高5、幅8×6 | 礁高2.65、幅4.2×4.2 | | | | 設置水深
(m) | | 40 | 20 | | | | | 空容積
(空m³) | 180.0 | 46.7 | | | | 構造 | イセエビが隠れる
ことができる棚 | なし | 高さ10cm、長さ135cm、
奥行き55cmの棚が1面に
2列4段設けられている | | | | | 餌料の
増殖基質の付加 なし | | なし | | | | | 設置年度 | 1997 | 1973 | | | | 調査期間 | | 2002年3月~
2002年10月 | 1976年9月 ~
1977年1月 | | | | 調査回数 | | 3 | 6 | | | ## 3.調査結果 ## (1) 海藻類の着生効果 貝殻増殖施設には、2002年3~6月以降、ノコギリモクやヤツマタモクなどの多年生ホンダワラ類数種類や多年生コンブ類であるクロメの着生がみられ(写真-3)、両者とも年月の経過とともに大型化して、クロメについては2003年7月以降、藻長30~50cm、多年生ホンダワラ類については2004年7月以降、藻長30~45cm程度で推移していた(図-5).2006年7月における貝殻増殖施設に着生したホンダワラ類とコンプ類の個体数は、施設1基当たりがそれぞれ44個体、230個体、本施設の設置面積当たりではそれぞれ3.6個体、18.8個体であった。 クロメなどのコンブ類については生長とともに繊維状である仮根部が餌料培養基質のメッシュパイプ部に絡み,平面形状のコンクリート面などに比べて固着力が大幅に大きいことが分かっており³⁾,餌料培養基質の構造は海藻類の繁茂に大きく貢献していると考えられた. また,これらの海藻類が大型になるにつれて,付着動物の増大とともに、施設内部が暗くなっているように観察された. 写真-3 貝殻増殖施設に着生したクロメなど 図-5 貝殻増殖施設に着生した多年生ホンダワラ類と 多年生コンプ類の藻長の推移 # (2) 餌料培養基質で増殖する付着動物 . - 関殻テストピースで2002年6月から2003年11月ま でに増殖した付着動物の総湿重量は19.3~114.1g, 平面形状テストピースは $4.2 \sim 14.2$ gで推移しており, 貝殻テストピースが平面形状テストピースよりも $4.6 \sim 8.0$ 倍多かった.とくにイセエビが好んで摂餌する動物群 $^{4),5)$ について比較すると,節足動物門蔓脚目(以下,蔓脚目)は平面形状テストピースが貝殻テストピースよりも1.8倍多かったが,節足動物門十脚目(以下,十脚目)は貝殻テストピースが平面形状テストピースよりも397.2倍,軟体動物門斧足綱(以下,斧足綱)が33.4倍,節足動物門端脚目(以下,端脚目)が3.7倍多かった(表-2). 貝殻テストピースに着生している動物のうちイセエビが好んで摂餌する動物群の着生量について,2002年6月(設置後8カ月)と2006年7月(設置後4年9カ月)を比較すると,斧足綱が2,245.1倍,腹足綱が8.4倍,蔓脚目が2.5倍に増加しており,この間に餌料動物は大幅に増大していた(表-3). 以上のことから,内部に複雑な空間を備えた貝殻 テストピースは,凹凸のない平面形状テストピース よりもイセエビの餌料となる小型動物,とくに十脚 目や斧足綱,腹足綱の動物を効率的に増殖させる施設として有効であると判断された. 表-2 貝殻テストピースと平面形状テストピースのイセ エビの餌料となる動物群の平均湿重量(g) | 動物群 | 貝殻(A) | 平面形状(B) | (A/B) | |----------|-------|---------|-------| | 軟体動物門腹足綱 | 10.08 | 3.88 | 2.6 | | 軟体動物門斧足綱 | 5.79 | 0.17 | 33.4 | | 節足動物門蔓脚目 | 2.06 | 3.74 | 0.6 | | 節足動物門端脚目 | 0.04 | 0.01 | 3.7 | | 節足動物門十脚目 | 6.62 | 0.02 | 397.2 | 表-3 貝殻テストピースにおける2002年6月と2006年7 月のイセエビの餌料となる動物群の湿重量 (g) | 動物群 | 2002年6月
(8カ月)
(A) | 2006年7月
(4年9カ月)
(B) | (B/A) | |----------|-------------------------|---------------------------|---------| | 軟体動物門腹足綱 | 4.68 | 39.32 | 8.4 | | 軟体動物門斧足綱 | 0.08 | 179.61 | 2,245.1 | | 節足動物門蔓脚目 | 5.14 | 12.63 | 2.5 | | 節足動物門端脚目 | 0.10 | 0.18 | 1.8 | | 節足動物門十脚目 | 6.73 | 6.63 | 1.0 | 写真-4 貝殻テストピースで増殖した 十脚目、斧足綱など #### (3)魚介類の蝟集効果 貝殻増殖施設には,10回実施した潜水による目視 観察において53種類の魚介類が確認され,2006年7 月では蝟集生物量(湿重量)は66.3kg/基となった. 主な蝟集魚介類は、イセエビ、サザエ、アワビ類な どの磯根動物やキジハタ、カサゴ、テンジクダイ科 など全長20cm未満の岩礁性魚類であり,とくにイセ エビやサザエ,カサゴ,キジハタ,テンジクダイ科 の魚類が頻度高く確認された. 写真-5 貝殻増殖施設に蝟集したサザエ ## (4)イセエビ成体の蝟集効果 貝殻増殖施設に蝟集したイセエビ成体は,2003 年7月(沈設1年9カ月後)に初めて出現し,その後, 時間の経過とともに増加して,2006年7月では最 大の 105.5 個体/基が確認された.また,2006 年 8 月の施設の引き揚げ調査で採集されたイセエビは 45.5 個体/基が確認されたが,底板コンクリート下 部に蝟集していた個体を作業上の問題から回収でき なかったため、さらに多くのイセエビが蝟集してい たことになる. 各調査で確認されたイセエビの大き さは体長 12~25 cm, 頭胸甲長 3~8cm であり, とく に体長 12~17 cm,頭胸甲長 3~5 cmの 1 歳と思われ る若い個体が多く,それらが全体の6割以上を占め ていた. また,イセエビの蝟集個体数と餌料培養基質で増 殖する付着動物の推移をみると、イセエビは付着動 物の増加とともに増えており,イセエビの餌料とな る動物の増加がイセエビの蝟集を高めた要因の一つ であると考えられた(図-6). 貝殻増殖施設で確認されたイセエビの蝟集個体数 と夏季に実施されている他の人工構造物のものとを 比較すると,海域や設置水深,資源量の年変動など の問題はあろうが(表-4),蝟集個体数は貝殻増殖施 設>対照区 >対照区 の順に多く,貝殻増殖施設 との差は対照区 が約 123.0 倍,対照区 が約 9.5 倍となった. 対照区が他の施設と比べてイセエビの蝟集量が 極端に少なかったのは、イセエビの隠れ場となる棚 構造部分が少ないことと、部材が平面構造のために 餌料培養機能が低いことによると考えられた.また, 対照区 は貝殻増殖施設と同様に棚構造になってい るが、貝殻増殖施設の蝟集量の方が多かったのは、 餌料培養基質による餌料供給効果が優れていたこと によると考えられた. 貝殻増殖施設内部の空間を上段,中段,下段の3 カ所と底板コンクリートと海底の間の空間1カ所に 分けてイセエビを計数した結果,2003 年 7 月では 約80%の個体が下段の空間に蝟集していたが、 2004 年 7 月以降では上段や中段の空間でみられる 個体が約 80%を占めるように変化した(図-7).こ れは、着生した海藻類が生長したり、貝殻増殖施設 の部材に着生した動物が増殖したりすることによっ て、施設内部の照度が低下し、イセエビに適した空 間が拡大されたことが要因の一つとして考えられた. また,下段の隙間や底板コンクリート下の蝟集量 は1~14個体で低位に推移していたのに対し,上段 や中段の隙間は時間の経過とともに増えて 2006 年 7月ではそれぞれ 58個体,23個体に急増していた。 付着動物は海水交換の良い場所で効率よく増殖する ことから(図-8)²⁾, 貝殻増殖施設における付着動物 の分布は外部に面した上部の貝殻パネルほど生物量 が多くなり,上段部の照度の低下とともに,餌動物 の多い上段の空間にイセエビの分布密度が高くなっ た可能性があると考えられた. 図-6 貝殻増殖施設に蝟集したイセエビと餌料培養 基質で増殖する小型動物の関係 貝殻増殖施設と他の人工構造物とのイセエビの 蝟集個体数の比較 | | 施設
(空容積) | 調査年月
(経過年月) | 構造 | | イセエビの個体数(個体) | | |---------------|----------------------------------|----------------------|---------------|-------------|--------------|--------| | 海域 | | | 隠れ場とな
る棚構造 | 餌料の
増殖基質 | 1基当たり | 空容積当たり | | 長崎市野母町 | 貝殻増殖施設
(8.6空m³) | 2006年7月
(4年9カ月) | | | 106 | 12.3 | | 長崎市野母町 (対照区) | 人工構造物
(180.0空m ³) | 2002年6月
(4年以上) | × | × | 16 | 0.1 | | 静岡県下田市 (対照区) | 人工構造物
(46.7空m³) | 1976年9月
(2年6カ月以上) | | × | 61 | 1.3 | 図-7 各調査における貝殻増殖施設に蝟集したイセエビの分布 図-8 貝殻の集積量と付着動物の湿重量の経時変化 (海水交換の良い順に、上層>下層>中層) 写真-6 貝殻増殖施設に蝟集したイセエビ (5)イセエビの産卵の場,幼生の着底の場,育成の場としての効果 2006 年 7 月の調査で抱卵したイセエビがみられ (写真-7), 蝟集したイセエビが本増殖施設で繁殖を行っており, 本施設が産卵の場として機能していることが分かった. 2006 年 8 月には貝殻増殖施設を台船上に引き揚げることによって体長 2.1 cm, 頭胸甲長 0.7cm の稚エビ 1 個体と体長 1.8~1.9 cm, 頭胸甲長 0.6 cmの プエルルス幼生(ガラスエビ)3 個体が確認されたことから,本施設がイセエビの浮遊幼生の着底の場として機能していることが確認された.これは,貝殻増殖施設にホンダワラ類やコンプ類など大型海藻類が着生することによって,藻着性を持っているイセエビの稚エビの蝟集や,プエルルス幼生5の着底の場として適した環境が形成されていると考えられた. 各調査において施設内部やその周辺で脱皮殻が多く散乱していたことから,本施設でイセエビが成長している 5つことが窺え,内部に狭い空間を備えた本施設は脱皮から脱皮直後に外殻が硬化するまでの外敵に襲われやすい期間の隠れ場としても有効であったのではないかと考えられた. 以上のことから,浮遊期以外の様々な成長段階のイセエビが貝殻増殖施設を利用していることが実証され(図-9),それらは本施設やその周辺で成長していることが窺えた. 写真-7 貝殻増殖施設に蝟集した抱卵イセエビ 図-9 貝殻増殖施設に蝟集したイセエビの生活史 #### 4.まとめ イセエビ成体は 2003 年 7 月に初めて出現し,その後,時間の経過とともに増加し,2006 年 7 月では 105.5 個体/基で最大となった.蝟集したイセエビの大きさは体長 12~17 cm,頭胸甲長 3~5 cmの 1歳と思われる若い個体が多くみられた. 貝殻テストピースで増殖する付着動物は,同じ外形の平面形状テストピースよりも 4.6~8.0 倍多かった.また,とくにイセエビが好んで摂餌する動物群については十脚目が 397.2 倍,斧足綱が 33.4倍,端脚目が3.7倍多く,これらの動物は時間の経過とともに増加がみられたことから,貝殻基質はイセエビの餌料となる小型動物を効率的に増殖させる施設として有効であると判断された. 貝殻増殖施設にイセエビが蝟集する要因として, 施設内部の明るさと餌料培養基質で増殖する付着動物の増加が要因として考えられた. イセエビが多く蝟集する施設の構造は、イセエビが隠れることができる棚構造を設けることが重要であり、さらに蝟集効果を高めるにはイセエビの餌料となる小型動物を効率的に増殖させることができる施設を付加させることが有効であると考えられた. 貝殻増殖施設において,抱卵したイセエビが確認 され,本施設が産卵の場として機能していることが 分かった. プエルルス幼生(ガラスエビ)や稚エビが確認されたことから,ホンダワラ類やコンプ類などの大型海藻類が着生することにより,本施設が幼生の着底の場として適した環境が形成されていると考えられた. 貝殻増殖施設にはノコギリモクやヤツマタモク, クロメなどの大型海藻類の着生がみられ,年月の経 過とともに大きく生長して,2006 年 7 月における 個体数は本施設の設置面積当たリホンダワラ類が 3.6 個体,クロメが 18.8 個体であり,仮根部が繊 維状であるコンブ類にとって餌料培養基質の構造は 海藻類の繁茂に大きく貢献していると考えられた. 貝殻増殖施設において,イセエビ成体,抱卵イセエビ,プエルルス幼生,稚エビが確認されたことにより,本施設が浮遊期以外の様々な成長段階のイセエビに利用されていることが実証された. 貝殻増殖施設にはイセエビのほか,サザエ,アワビ,全長 20 cm未満のキジハタ,カサゴなどが蝟集しており,沿岸の岩礁域で生息する多くの魚介類に利用されていた. これらのことから,貝殻増殖施設はイセエビの餌場,保護育成の場,産卵の場として有効な漁場施設の一つであると判断された.また,イセエビは沿岸の天然岩礁や漁場施設のほか,防波堤などの漁港施設にも分布していることから,適切な場所や漁港・港湾施設などと組み合わせることによって,イセエビ資源の維持・増大に大きく寄与でき,"自然と港の共生"にも役立つものと考えられた. 謝辞:本調査を実施するにあたり,ご指導頂きました財団法人漁港漁場漁村技術研究所技術委員の柿元 時 博士に心より御礼申し上げます.また,調査実施に御協力頂きました長崎市野母崎行政センター,社団法人水産土木建設技術センター長崎支所,長崎県漁業協同組合連合会,野母崎三和漁業協同組合の各職員,組合員の皆様に感謝の意を表します. #### 参考文献 - 1)野田幹雄・田原実・片山貴之・片山敬一・柿元晧:内部空隙をもつ管状基質が無脊椎動物,特に魚類餌料動物の加入に与える効果,水産増殖,50(1):37-46,2002. - 2) 監修 坂口守彦・平田孝:水産資源の先進的有効利用 法 -ゼロエミッションを目指して-,pp301-314, 2005. - 3) 片山貴之・吉田創・田原実・片山敬一・柿元晧:平成 14 年度日本水産工学会学術講演会講演論文集,pp65-68,2002. - 4) 財団法人海洋生物環境研究所:沿岸至近域における海 生生物の生態知見 貝類・甲殻類・ウニ類編, pp335-375, 1991. - 5) 社団法人全国沿岸漁業振興開発協会:沿岸漁場整備開発事業 増殖場造成計画指針 マダイ・イセエビ編 昭和 63 年度版, pp197-302, 1988. - 6) 社団法人全国沿岸漁業振興開発協会:沿岸漁場整備開発事業 人工魚礁漁場造成計画指針(水産庁監修)平成12年度版,pp26-44,2000.